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Abstract: Oak powdery mildew (Erysiphe alphitoides (Griffon and Maubl.) U. Braun and S. Takam.)) is 
one of the most common foliar pathogenic organism of oaks, exploiting harmful effects, particularly on 
young seedlings. To assess and evaluate these negative effects, an experiment was conducted under 
semi-controlled conditions with 20 one-year-old seedlings of Quercus robur L. infected with E. 
alphitoides, half of them showing 50% of leaf coverage by epiphytic mycelia and the other half a coverage 
of 75%. The results of the present study have shown that all observed parameters of 
chlorophyll a fluorescence transient were highly effective in the detection of severe biotic stress. 
Moreover, the studied parameters of slow fluorescence kinetics were also considerably influenced, with 
the coefficient of non-photochemical fluorescence quenching and the Stem-Volmer type non-
photochemical fluorescence quenching parameters showing the fastest responses. In case of leaf 
stomatal traits, the decrease of stomata guard cell width coupled with the increase of stomatal density 
was observed as the protective mechanism of Q. robur against the stressor. The overall results showed 
the adverse effects of powdery mildew infection on the photosynthesis of pedunculate oak seedlings, 
which progressed in time and depended on the severity of the infection. The importance of the results 
of the present study lays in evaluation and monitoring of the effects of powdery mildew development 
on the photosynthetic apparatus of one-year-old Q. robur seedlings, which is the most vulnerable stage 
for the infection by the mentioned pathogen.  
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1. Introduction 
 

Pedunculate oak (Quercus robur L.) is a widespread tree species in European forests with high 
economic benefits due to the quality of  timber (Heuser and Zimmer 2002; Pietras et al. 2015; Árvai et 
al. 2018). However, in the last few decades, a diminishing in the vitality of Q. robur stands related to 
biotic and abiotic stress factors, has been observed (Thomas et al. 2002; Sohar et al. 2014; Kostić et al. 
2019). In case of biotic stress factors, oak powdery mildew (Erysiphe alphitoides (Griffon and Maubl.) U. 
Braun and S. Takam.)) has been recognized as one of the most important and widespread foliar 
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pathogenic organisms for oaks (Desprez-Loustau et al. 2010; Pap et al. 2014; Copolovici et al. 2014). E. 
alphitoides has particularly harmful effects on young shoots and leaves during the early ontogeny 
development phase (Pap et al. 2014), although it has been shown that the presence of this obligate 
pathogen may reduce the vigor of mature trees in case of combined stress conditions, i.e., defoliation 
caused by insects (Thomas et al. 2002). Likewise, the negative effect of powdery mildew also has a 
strong correlation with the timing and severity of the infection (Marçais and Desprez-Loustau, 2014). 

An infection by powdery mildew occurs as the fungi develop its mycelia on the surface of the 
host plant's leaf and further differentiates infection structures in the epidermal cells. In addition, the 
fungi derive the metabolites necessary for its own nutrition through the absorptive organs (i.e. 
haustoria) (Divon and Fluhr, 2007). As a result of the infection, a large number of conidiophores are 
produced, which manifest in the form of a silver-white cover on the leaf surface, a typical sign of 
powdery mildews (Desprez-Loustau et al. 2010). The most common effects of oak powdery mildew are 
a reduction in carbon assimilation and the translocation of carbohydrates, as the consequence of 
acquiring nutrients from host plants cells (Hewitt and Ayres, 1976). Indeed, several studies have 
demonstrated that an infection by E. alphitoides may cause either a decline of photosynthesis or stomatal 
conductance or both physiological processes, in parallel (Brüggemann and Schnitzler, 2001; Hajji et al. 
2009; Copolovici et al. 2014).  

Upcoming climate changes require more attention to be paid to disease control in nursery 
production and reforested areas, especially to more harmful diseases, like oak powdery mildew. 
Namely, the predicted climate change towards warmer winters has been noted to favor the 
overwintering of E. alphitoides in oak buds (Marçais et al. 2017), which contributes to its wider 
distribution and higher occurrence. As during in the early stage of the oak tree life cycle, powdery 
mildew was noted to be the most important adverse biotic stress factor (Percival and Fraser, 2002; 
Marçais and Desprez-Loustau, 2014), so our study investigated the effect of the noted pathogen on one-
year-old Q. robur seedlings. 

Since chlorophyll fluorescence has a direct link to the light stage of photosynthesis, additional 
valuable information could be provided about the indication of photosynthetic dysfunction (Lucena et 
al. 2012; Ortoidze, 2016). Chlorophyll a fluorescence techniques have been proven to be a reliable tool 
for the detection of salt stress (Mehta et al. 2010; Lucena et al. 2012), drought stress (Vastag et al. 2019; 
Vastag et al. 2020), heatwave (Bauweraerts et al. 2014; Guha et al. 2018) and nutrient status identification 
(Frydenvang et al. 2015; Kalaji et al. 2018). Furthermore, several studies have also demonstrated its 
effectiveness in the monitoring of various biotic stress conditions (Wang et al. 2014; Dąbrowski et al. 
2017; Kaur et al. 2018). However, in terms of powdery mildew, thus far only a small number of studies 
have applied this method for detection or estimation of its negative effects on photosynthesis (Percival 
and Fraser, 2002; Dąbrowski et al. 2017). Moreover, the mentioned studies only dealt with a few 
parameters, insufficient for getting the entire picture about the behavioural patterns of Q. robur under 
biotic stress caused by E. alphitoides.  

Therefore, having in mind the need for an expansion of the specter of chlorophyll a fluorescence 
parameters, the present study was meant to investigate the effectiveness of chlorophyll a fluorescence 
kinetics and chlorophyll a fluorescence transient in combination with the stomatal traits for the 
detection, evaluation and monitoring of severe biotic stress levels caused by powdery mildew fungi on 
one-year-old Q. robur seedlings. Accordingly, the results should provide valuable information about 
which parameters of chlorophyll a fluorescence and leaf stomatal traits could be used for discovering, 
evaluating and monitoring  powdery mildew infections.  

 
2. Material and methods 
 
2.1. Plant material 
 

Acorns, of a single genotype located along the Vojvode Stepe Boulevard (N 45°25'61.75", E 
19°79'73.47", altitude 80 m a.s.l.) in Novi Sad, Serbia, were collected in October 2017. During the winter 
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months, the collected acorns were stratified in a peat:sand mixture (l:l, v/v, 5 L). Following the 
stratification, on the 31st of March 2018, a 24h soaking process was conducted in order to eliminate 
unviable acorns. After the rehydration process, the acorns were sown in PVC pots (20 cm × 16 cm, 
height × diameter, 3 liters) filled with Stender potting substrate S 200 (organic matter 20%, pH 5.5, 
electrical conductivity (EC): 670 µS/cm, dry matter 37.1%, fertilization: 1.0 kg NPK 14 + 16 + 28) and 
maintained in a greenhouse under semi-controlled conditions. The air temperature in the greenhouse 
ranged between 20°C at night and 30°C during the day, whereas the lightening varied according to 
outdoor conditions, never exceeding 1000 µmol photons m−2 s−1 even under sunny conditions. 
Throughout this period, the plants were watered every second day to maintain soil water content close 
to field capacity (-0.03MPa). Tensiometers were placed at a depth of 10 cm for monitoring soil water 
tension.  

The potted seedlings were moved to the outdoors from the 1st of May and kept under a canopy 
of four mature pedunculate oak trees, located in the forest estate of the Institute of Lowland Forestry 
and Environment in Novi Sad, Serbia. 
 
2.2. Experiment design and assessment of the severity of the infection  
 

The seedlings kept outdoors were arranged in two groups: one which was covered and protected 
by cellophane bags, allowing gas exchange and ensuring the prevention of the infection by the studied 
pathogen; and the second group of seedlings, kept unprotected, which were spontaneously and 
naturally infected by E. alphitoides from the mature oak trees. Prior to the first measurements, ten 
seedlings were randomly assigned to the control group. A further, ten seedlings, with the coverage of 
epiphytic mycelia reaching 50%, were selected for the first treatment group. The second treatment 
group consisted of an equal number of specimens, with the coverage of epiphytic mycelia reaching 
75%. The measurements started on the 6th of July 2018 and were repeated, weekly, over the following 5 
week period. During this period, the infection advanced according to its natural course, and, by the 
end, the leaves of the first treatment group had reached a coverage of 75% with epiphytic mycelia, 
while the second treatment group had 100% leaf infection coverage. The experiment ended when the 
second treatment group showed symptoms of foliar chlorosis, dead leaves, and branches, considered 
as signs of plant mortality, according to Barradas et al. (2017). 

For an estimation of the percentage of the leaf area occupied with epiphytic mycelia of E. 
alphitoides the upper side of ten leaves per treatment (30 leaves in total) was chosen at the beginning 
and at the end of the measurements. After the collected leaves were photographed, the obtained images 
were processed by ImageJ freeware software (Schneider et al. 2017) for image analysis. 

 
2.3. Measurements of chlorophyll a fluorescence transient 
 

Fast chlorophyll fluorescence induction curves (OJIP) were recorded with a PAM-2500 portable 
chlorophyll fluorometer (Walz, Germany). All measurements were conducted on the 3rd fully 
expanded leaf, aged 20 days or more, between 9:00 AM and 11:00 AM due to midday depression of 
photosynthesis. During this period, ten seedlings from each treatment group were recorded for 
fluorescence transient as well as slow kinetics. Prior to measurements, the leaves were dark-adapted 
for 30 min with light exclusion clips. The OJIP transient was induced by strong light pulses of 3000 
photons µmol m-1s-1 and recorded between 10 µs and 320 ms (Kautsky curve). The obtained data were 
analyzed using OJIP test protocol of Strasser et al. (2000) (Table 1). 
 
2.4. Measurements of slow chlorophyll fluorescence kinetics 
 

Slow chlorophyll fluorescence kinetics were assessed using the automatic rapid light curve 
function of the PAM-2500 portable chlorophyll fluorometer (Walz, Germany), between 9:00 AM and 
11:00 AM. Measurements included seven periods of actinic illumination, ranging from 144 to 2443 
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µmol (photon) m-2 s-1. The illumination periods lasted for 20 s each and were divided by a saturating 
flash of ∼3000 µmol m-2 s-1 lasting for 0.8 s. Relevant fluorescence parameters (Table 2) were derived by 
using the recorded data. 
 
Table 1. Parameters deduced by the OJIP test analysis of chlorophyll a fluorescence transient. 
 

Abbreviation and formula Basic physiological interpretation 
Basic fluorescence parameters of OJIP-transient 
FJ (2 ms) Fluorescence value at the J-step (2 ms) of OJIP 
FI (30 ms) Fluorescence value at the I-step (30 ms) of OJIP 
Derived fluorescence parameters of OJIP-transient 
Fv = Fm − F0 Maximum variable fluorescence from dark adapted leaf1 

ΦPo = FV/Fm =  1 - (Fo/Fm) Maximum quantum yield of primary PSII 
photochemistry1 

FV/F0 = (Fm - F0)/F0  Efficiency of the water-splitting complex on the donor 
side of PSII1 

PIABS = (RC/ABS) [ΦPo/(1 - ΦPo)] * 
[ψETo/(1 - ψETo)]  

Performance index on absorption basis1 

1 (Strasser et al. 2000) 
 

Table 2. Derived parameters of slow chlorophyll fluorescence kinetics. 
 

Abbreviation Basic physiological interpretation 
Derived fluorescence parameters 

Y(NO) = F/Fm Quantum yield of non-regulated heat dissipation and 
fluorescence emission (Genty et al. 1996) 

NPQ = Fm/Fm’ - 1 
Stem-Volmer type non-photochemical fluorescence 
quenching (Schreiber et al. 1986, as formulated by van 
Kooten and Snel, 1990) 

ETR = PAR*0.84*0.5*Y(II) Relative electron transport rate 

qN = 1 - ((Fm’ - Fo’)/(Fm - Fo)) 
Coefficient of non-photochemical fluorescence 
quenching (Schreiber et al. 1986, as formulated by van 
Kooten and Snel, 1990) 

qP = (Fm’-F)/(Fm’-Fo’) 
Coefficient of photochemical fluorescence quenching 
(Schreiber et al. 1986, as formulated by van Kooten and 
Snel, 1990) 

 
2.5. Measurements of stomatal characteristics 
 

Stomatal imprints were made using the collodion method according to the described protocol by 
Stojnić et al. (2015). Stomatal imprints were analyzed using an Olimpus BX 53F microscope in order to 
assess the following primary stomatal characteristics: stomatal density per mm2 (SD), stomata guard 
cell length (LA [µm]) and width (WB [µm]), and stomatal aperture length (La [µm]) and width (Wb [µm]). 
SD was determined at five randomly chosen visual areas using the freeware software tpsDIG2 (Rohlf 
FJ, 2017). QuickPhoto Camera 3.2. software was used to measure stomata guard cell and stoma aperture 
size, on a sample of five stomata per five randomly chosen fields of view. 
 
2.6. Statistical analysis 
 

The differences between the control and the two treatment groups were analyzed by one-way 
Analysis of Variance (ANOVA). When values from ANOVA were shown to be statistically significant, 
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a comparison of means was performed by applying the Tukey test, so as to determine the level of 
significance. For better visualization, the results were shown in forms of linear and bar graphs. 
Statistical analyses was performed using the R 3.3.2. software (R Core Team, 2017) for Windows. A 
significance level of 0.05 was considered for all analyses. 
 
3. Results 
 
3.1. Meteorological characteristics 
 

The meteorological data was obtained from the nearby hydrometeorological station Rimski 
Šančevi (N 45°20', E19°51', altitude 84 m a.s.l.) (Republic Hydrometeorological Service of Serbia, 2018). 
In accordance with the obtained data (Figure 1), the period of the experiment can be characterised as 
wet and mildly warm. The mean air temperatures were mostly in the range of 22°C and 24°C, never 
exceeding 28°C. Regarding the daily sums of precipitation, an abundance was observed, including one 
extreme weather event on the 30th of June, with a recorded 116.6 mm for that day. The described climatic 
data provided favorable weather conditions for the spontaneous infection of the studied one-year old 
oak seedlings and the further fungal development of powdery mildew.  

 

 
Figure 1. Mean daily air temperature (°C) and daily total precipitation (mm) during the period from 1th 

of May to  3rd of August 2018. 
 
3.2. Chlorophyll a fluorescence transient 
 

All of the observed parameters of chlorophyll a fluorescence transient showed to be significantly 
influenced by the mentioned obligate leaf parasite, in both of the studied treatment groups, detected 
during the first round of conducted measurements (Figure 2). The studied biotic stress significantly 
inhibited fluorescence transients across the basic observed parameters of the OJIP curve, causing a 
reduction of 36.4% and 45.35% in case of Fj, 28.9% and 49.8% for Fi, within leaves covered with 50% or 
75% E. alphitoides. mycelia in the first round of measurements. The decline in the observed primary 
parameters progressed with time and the severity of the infection, reaching 66.0% and 78.4% for Fj and 
60.0% and 81.1% for Fi by the end of the experiment, for leaves occupied 75% or 100% by the studied 
pathogen (Figure 2a and 2b).  

In case of the Fv parameter, the control group remained within 0.87-0.77 throughout the whole 
experiment, whereas in the two treatment groups the mentioned parameter showed a gradual decrease 
with increasing levels of stress, reaching a reduction of 17.38% or 49.33% for leaves infected 75% and 
100%, respectively (Figure 2c).  
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Furthermore, a significant reduction of the ΦPo parameter was detected, compared to the control 
plants, in both of the treatment groups. While the values of the control group were between 0.75 and 
0.85, a range documented for healthy plants (Bolhàr-Nordenkampf and Orquist, 1993), the first 
treatment group exhibited a decline of 41.9% and the second a 53.5% decline during the first 
measurements. At the end of the experiment, the reduction reached 61.2% and 77.1% for Q. robur leaves 
infected 75% and 100% with E. alphitoides respectively (Figure 2d). 

 

 
Figure 2. Progress curves of chlorophyll a fluorescence transient parameters measured on leaves of Q. 
robur seedlings. A - Fluorescence value at the J-step (FJ [relative units]); B - Fluorescence value at the I-
step (FI [relative units]); C - Maximum variable fluorescence from dark adapted leaf (Fv [relative units]); 
D - Maximum quantum yield of primary PSII photochemistry (ΦPo [relative units]); E - Efficiency of the 
water-splitting complex on the donor side of PSII (FV/F0 [relative units]); F - Performance index on 
absorption basis (PIABS [relative units]). All values are presented as means ± standard errors (n = 10). 
The different small letters next to error bars indicate significant differences between the values (Tukey’s 
honestly significant difference (HSD) test; p ≤ 0.05). 
 
3.3. Slow fluorescence kinetics 
 

Concerning the parameters of slow fluorescence kinetics, Y(NO) showed an increasing trend, 
meanwhile NPQ,  ETR, qN and qP were decreased under severe biotic stress caused by E. alphitoides 
(Figure 3). From all of the obtained parameters, only Y(NO) was shown to be mildly sensitive in the 
detection of the differences between the control and the infected plants, showing statistically significant 
differences during the second round of measurements. At the end of the experiment, the values of 
Y(NO) increased by 15.2% and 21.2% in leaves occupied 75% and 100% by the studied pathogen (Figure 
3a).  

On the other hand, statistically highly significant differences between the two treatment groups, 
as well as between the healthy and the infected plants, were observed for NPQ and qN parameters 
(Figure 3b and 3d), discovered as early the first round of measurements, indicating a high effectiveness 
in the detection of biotic stress.  
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Figure 3. Progress curves of slow fluorescence kinetics parameters measured on leaves of Q. robur 
seedlings at high light conditions (1389 µmol (photon) m-2 s-1). A - Quantum yield of light-induced non-
photochemical fluorescence quenching (Y(NO) [relative units]); B - Stem-Volmer type non-
photochemical fluorescence quenching (NPQ [relative units]); C - Relative electron transport rate (ETR 
[µmol m-2 s-1]); D - Coefficient of non-photochemical fluorescence quenching (qN [relative units]); E - 
Coefficient of photochemical fluorescence quenching (qP [relative units]). All values are presented as 
means ± standard errors (n = 10). The different small letters next to error bars indicate significant 
differences between the values (Tukey’s honestly significant difference (HSD) test; p ≤ 0.05). 
 
3.4. Stomatal traits 
 

Regarding stomatal characteristics, our results showed that infection by E. alphitoides. caused a 
significant increase in SD and a simultaneous reduction in Wb (Figure 4a and 4e). In case of SD, the 
highest values were observed in leaves covered 75% by mycelia at the start of the measurements, as 
well as at the end of the experiment, when the mycelia reached 100% of leaf coverage. Moreover, the 
infection occupying 50% of leaf area showed to cause higher values of SD in comparison with the SD 
of plants in the control group, during the first conducted measurements, as well as at the end, with the 
infection reaching a 75% leaf coverage (Figure 4a). On the other hand LA, WB and La were not 
significantly affected by the mentioned pathogen (Figure 4b, 4c and 4d). 
 
4. Discussion 
 

Results from the present study show the adverse effects of powdery mildew infection on the 
photosynthesis of pedunculate oak seedlings. The effect of the observed biotic stress on the values of 
polyphasic fluorescence transient parameters depended on the intensity of infection, except for Fi in the 
first recording. A positive correlation between the degree of the E. alphitoides infection and the severity 
of damage on the photosynthetic apparatus, affecting the level of net photosynthesis, has been 
documented by several studies (Hajji et al. 2009; Pap et al. 2014). The mentioned decline of 
photosynthesis was partially explained by a reduced quantity of irradiance reaching the photosynthetic 
apparatus due to the shedding effect of the mycelia occupying the surface of the leaves (Misaghi, 1982). 
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Nevertheless, according to Mitchell et al. (1979) the major factor causing the decline is the reduction of 
chlorophylls.  
 

 
Figure 4. Stomatal traits of leaves of Q. robur seedlings. The different small letters next to error bars 
indicate significant differences between the values (Tukey test; P ≤ 0.05). A - stomatal density per mm2 

(SD [number per mm2]); B - stomata guard cell length (LA [µm]); C - stomata guard cell width (WB [µm]); 
D - stomatal aperture length (La [µm]); E - stomatal aperture width (Wb [µm]). All values are presented 
as means ± standard errors (n = 10). The different small letters next to error bars indicate significant 
differences between the values (Tukey’s honestly significant difference (HSD) test; p ≤ 0.05). 
 

Only a few studies approached the effects of E. alphitoides infection on light-harvesting apparatus 
by applying fluorescence measurements techniques (Percival  and  Fraser, 2002; Dąbrowski et al. 2017), 
even though it has been proven to be a rapid, accurate and non-invasive method (Stirbet, 2014; Kalaji 
et al. 2018; Song et al. 2018). Likewise, the above-mentioned studies only dealt with a very scarce 
number of chlorophyll fluorescence parameters, insufficient for getting the entire picture of damage 
made on PSII and PSI reaction centers.  

The results from the present study evidenced a significant reduction of Fi and Fj parameters of 
chlorophyll a fluorescence transient within leaves covered 50% or 75% by E. alphitoides mycelia, which 
decreased gradually in time as the infection progressed. Similarly, a reduction of the above-mentioned 
parameters was observed by Zhori et al. (2015) on leaves of Euphorbia cyparissias infected by Uromyces 
pisi, as well as by Kaur et al. (2018) on leaves of Tinospora cordifolia inoculated with Phoma putaminum 
Speg. A decline of the Fi and Fj parameters was observed not only as the effect of biotic stressors but in 
abiotic stress conditions as well, reported for salt stress (Oyiga et al. 2016; Zushi and Matsuzoe, 2017), 
drought (Banks, 2018; Wang et al. 2018), temperature stress (Martinazzo et al. 2012; Chen et al. 2013) 
and chemical influence (Dąbrowski et al. 2017). According to Kaiser et al. (2014) every change in 
environmental conditions presses the photosynthetic system to adjust through its physiological state. 
This adjustment is particularly observable in the shape of the fast polyphasic fluorescence transient (Xia 
et al. 2004; Mehta et al. 2010), and thus can be successfully applied for the detection and monitoring of 
the deviation in the behavioural patterns of stressed plants (Cetner et al. 2017). This claim was 



Topola/Poplar 2022, 209, 31-46                                                                                                                             www.ilfe.org 
 
 

 39 

evidenced by Percival (2005) as well, stating that the shape of the OJIP curve identified herbicide and 
heat damage, 24h after the applied treatments.   

A decrease in the Fv parameter, evidenced by the present study, is associated with the disorder 
of energy transformation in PS II, as well as with the partial closing of reaction centers. This results in 
a fragmented damage of their function during the conversion of light energy into chemical potential 
(Saakov et al. 2015), indicating less photosynthetic competence per unit of chlorophyll followed by a 
lower photosynthetic activity of PSII. Under different stresses Fv was reported to diminish, i.e., during 
freezing stress (Forney et al. 2000), drought stress (Paknejad et al. 2007; Zlatev, 2009), salt stress 
(Hniličková et al. 2017). Furthermore, its decline is coupled with the reduction of ΦPo, the most 
frequently used fluorescence parameter for the detection of a plant’s physiological state under different 
unfavorable conditions (Roháček et al. 200; Kalaji and Guo 2008).  

In our study, the biotic stress caused by powdery mildew lead to a significant reduction of ΦPo 
parameter within leaves covered 50% or 75% by mycelia, in the first round of measurements, and it 
declined further as the infection progressed. The study conducted by Percival and Fraser (2002) 
demonstrated that the values of ΦPo remained constant until 11%-25% of Q. robur leaf surface area was 
occupied with the mycelia of powdery mildew, while afterward, the values showed a steady decline 
until the end of the experiment when the leaves became necrotic and stunned. Similarly, Kurjak et al. 
(2019) observed a much more pronounced decrease of the above-mentioned parameter in previously 
stressed Fagus sylvatica L. trees. In addition, Wang et al. (2014) reported a slight ΦPo decline of 7% in 
five days after inoculation in rubber trees infected with Oidium heveae Steinm., while a significant 
reduction (16%) was observed after a further five days. According to Guo et al. (2015), the decline of 
ΦPo is presumably the result of a reduction of the original light energy conversion efficiency, showing 
the inhibition of a potential active center. As a result of inhibition, the active center suppresses the 
reaction center of leaves to photosynthesize (Rong-Hua et al. 2006). Nevertheless, this parameter 
provides only partial information about the state of photosynthetic apparatus, thus should be carefully 
interpreted and combined with additional parameters indicating its function (Pšidová et al. 2018). In 
some cases, the Fv/Fo parameter has been proven to be a better alternative to ΦPo, being more 
susceptible to environmental changes (Maxwell and Johnson, 2000), as supported by our study as well, 
showing a more rapid decrease in comparison with ΦPo, in both of the treatment groups during our 
experiment.  

In order to get further insight into the functionality of PS II and PSI, as well as to evaluate the 
current status of plants’ performance under stress (Strasser et al. 2004), PIABS values were obtained and 
their decline was observed under biotic stress. Results of the study conducted by Percival and Fraser 
(2002) evidenced that the PIABS value is a highly sensitive indicator of E. alphitoides infection, and 
therefore of plant vitality in general, manifesting its effects even prior to the visible signs of the 
infection. The effectiveness of this parameter has been noted by Banks (2018), as well, responding most 
significantly during drought stress of Acer sp. genotypes. The gradual decrease of this parameter has 
been associated with disturbances at the PSII acceptor side (Brestic and Zivcak, 2013), while its decrease 
reflects the loss of the density of reaction centers (Dudeja and Chaudhary, 2005). 

In terms of slow fluorescence kinetics, biotic stress caused by E. alphitoides mildly affected the 
Y(NO) parameter. An increase in this parameter is associated with a loss of energy along the electron 
transport chain, as well as with the destruction of the D1 protein in PSII, which overall presents the 
destruction of PSII (Olmos and Posada, 2013; Li and Zhang, 2016). In accordance with our results, 
Bürling at el. (2009) demonstrated that Y(NO) was unable to detect differences between control and 
inoculated wheat plants with concentrations up to 100.0 spores/ml of Puccinia triticina. Similarly, Li et 
al. (2008) noted the absence of significant differences in the mentioned parameter between control, 
mildly and severely drought-stressed cucumber seedlings.  

According to Demmig-Adams et al. (2014), NPQ reflects molecular adaptation which is, indeed, 
the fastest response of the photosynthetic membrane exposed to excess light. In terms of NPQ, our 
results suggest that nonphotochemical dissipation was insufficient to avoid photoinhibitory damage, 
which was indicated by the decrease of the ΦPo parameter, as well. Our findings are in accordance with 
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the results of Scholes and Rolfe (2009) who reported a decrease of NPQ during necrotrophic phases of 
Mycosphaerella graminicola and wheat interactions. Similarly, Ghosh et al. (2017) evidenced the same 
trend in rice leaves infected with Rhizoctonia solani Kuhn. Unfavorable environmental changes, such 
as infection by a pathogen, affect the saturation of the electron transport chain and increase the 
accumulation of protons, which results in increased values of NPQ (Porcar-Castell et al. 2014). 
Decreased values of NPQ reflect the destruction of photosynthesis systems, which results in an 
incapability to transport the absorbed light energy to PS I as photochemical quenching (Li et al. 2016).  

In a study conducted by Chávez-Arias et al. (2019), a statistically significant reduction of ETR 
was found in leaves of Physalis peruviana L. on the 33rd day after the infection with Fusarium oxysporum 
f. sp. physalis. Few additional studies have evidenced the decline of ETR during the infection process 
with pathogens (Prokopová et al. 2010; Wang et al. 2014; Bermúdez-Cardona et al. 2015), as detected in 
our experiment as well. Furthermore, a sharp decrease, similar to our findings of the mentioned 
parameter, was observed in Vitis vinifera when the relative volume of water decreased down to 
approximately 50%-55%, resulting in irreversible damage on the photosynthetic apparatus (Ortoidze, 
2016).  

According to Chen et al. (2016) apart from ΦPo, qP and qN are the other commonly used 
parameters of fluorescence that showed to be feasible for detecting damages resulting from subtle, 
transient stress, as well as from long term and severe stress. Indeed, many studies have reported that 
severe stress conditions causes a decrease in qN and qP parameters indicating a severe loss of 
functionality of the PSII (Horton et al., 2008; Murchie and Lawson, 2019). Our results, in accordance 
with the above-mentioned findings, show significant differences in qN and qP between healthy and 
infected plants. Additionally, qN distinguished significant differences between the two treatment 
groups in the first round of measurements, while qP succeeded that in the later stages of infection, 
namely, during the third round of measurements. The prolonged time needed for the detection of stress 
levels with qP was also noted by Hazrati et al. (2016), stating that this parameter was insufficient for 
the detection of differences between 20% and 40% of applied water regimes. At the end of our 
experiment its values were reduced to 0.59 and 0.40 in leaves infected 75% and 100%, showing that 
most of the PSII reaction centers were closed and their Qa was in a reduced state (Zlatev, 2013; Kalaji 
et al. 2014).  

SD is marked as an important eco-physiological parameter affecting gas exchange and 
photosynthesis, which is highly suspectable to changes in the environment, i.e., drought (Mansouri and 
Radhouane 2015, Shekari et al. 2016), high irradiance (James et al. 2000; O’Carrigan et al. 2014), 
pathogen infection (Lake and Wade, 2009; Gomes de Araujo, 2010; Chattopadhyay et at. 2014), etc. 
Several studies have demonstrated that SD increases with the intensity and duration of stress, as 
evidenced by our study as well (Djauhari et al. 2008; Djaenuddin and Talanca, 2019). Namely, under 
stress conditions the pathogen signaling system is triggered in order to increase stomatal numbers, as 
a protective mechanism to fight against the stressor (Reyna and Yang, 2006; Lake and Wade, 2009). On 
the other hand, Wb was shown to decrease in the first conducted measurements in leaves infected 50% 
and 75 %, showing a further decrease in the second treatment group. It has been well documented that 
even early biotic stress causes the closure of stomata and a reduction in photosynthesis, while severe 
stress, as in our case, results in the severe disruption of stomatal function and an inhibition of 
photosynthesis (Zou et al. 2017; Wang et al. 2018). Although Holland and Richardson (2009) noted that 
apart from SD, LA is also considered to be sensitive to changes in environmental conditions, our study 
showed the absence of significant differences between control and two treatment groups. Similar 
findings were obtained by Stojnić et al. (2015) and Richardson et al. (2001), suggesting that SD is more 
plastic to environmental influences, which results in its higher ability to adjust to different conditions.  
 
5. Conclusions 
 

The results of the present study point to a disturbance in the photosynthetic apparatus under 
biotic stress caused by E. alphitoides, which progressed in time and depended on the severity of the 
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infection. Statistically significant negative effects of the studied pathogen on leaf physiology were 
detected by all of the observed parameters of the chlorophyll a fluorescence transient, showing its 
effectiveness in the detection of severe biotic stress. Furthermore, parameters of slow fluorescence 
kinetics were considerably influenced as well, with qN and NPQ parameters showing the fastest 
responses. Concerning the harmful effects of the studied pathogen on stomatal traits, we detected a 
significant increase of SD followed by a simultaneous reduction of Wb, as a protective mechanism of Q. 
robur against the stressor.  
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